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1. INTRODUCTION

ProsLems involving fluid flow and heat transfer with the
moving core of 4 solid body or liquid in an annular geometry
can be found in many engineering practices, such as in manu-
facturing (e.g. extrusion, drawing and hot rolling), in trans-
portation (e.g. trains travelling at high speed in a long tunnel
or underground railways), in nuclear reactor operation (e.g.
inverted annular film boiling) etc. In such processes. the fluid
flow involved can be either laminar or turbulent and the
moving body continuously exchanges heat with the sur-
rounding environment.

In our previous studies, [, 2], we presented the solutions
on the problems of fully developed laminar and turbulent
fluid flows and heat transfer in a concentric annulus with a
moving core. For the laminar fluid flow [1], the solutions
were obtained for the cases of one wall only heated with the
other insulated and of the inner and outer tubes for any heat
flux ratio. The solutions for the latter were obtained through
the influence coefficients [3), which are evaluated from the
fundamental solution from the definition.

For the case of turbulent fluid flow, the solution was
presented for the condition of a constant heat flux at the
inner core only with the outer wall insulated [2]. To comp-
lement this, the solutions are presented here, for the turbulent
heat transfer in an annulus for the cases of the outer wall
only heated with the inner wall insulated, and of the inner
and outer walls for any heat flux ratio.

2. ANALYSIS

2.1, Case for the outer wall only heated and the inmer insulated

For the prediction of temperature distribution and heat
transfer rates, a modified mixing length model for flow tur-
bulence is used for the analysis [2]. The intermediate details
of the mathematical development of the analysis can be easily
deduced from ref. [2] and therefore are not presented here.
Appropriate adjustments were made in the present analysis
for the matching conditions to accommodate the different
boundary condition from that of the case for the inner wall
only heated and the outer insulated.

2.2, Cases for hoth walls heated independonily

For the cases where both wall surfaces are heated inde-
pendently, the Nusselt numbers on the two surfaces for any
heat flux ratio may be calculated, utilizing the superposition
method [1, 3]. This is because the governing energy equation
for the present study is linear and homogeneous. The Nusselt
numbers for asymmetric heating are then obtained through
influence coefficients [4] given as:

N N
g, =
0 gredgr,)
where j = [ then k = 0 and j = o then & = i. Here, gg; and
gr, are defined as positive into the fluid.

The Nusselt numbers, Nu; and Nu,, are defined as:

h

h2(R,~ R,
Nu, = 1’{ ’_) {2y
k
The heat transfer cocflicient is defined as:
Ny = e, (e, —T4) (3)

where j = i or 0.
The influence coeflicients, 0 and 0%, are defined as [3]:
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where for Case A :j = iand k = o and for Case B:/ = o and
k=i

3. RESULTS AND DISCUSSION
The range of parameters considered are :
The radius ratio («): 0.2, 0.5, 0.8 and 0.99
The relative velocity (U*): 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0
The Reynolds numbers {Re): 10%, 3x 10°, 107 and 10°
Prandtl numbers (£r): 0.72, 10 and 50.

The results are presented in Table | and in Figs. 1 and 2.
The numerical values for the parameters in the table seem
not to change monotonously with increasing values of U*
and this could be due to the combined effects of U*, «, Pr
and Re.

The results for U'* = 0.0 are almost identical to those of
Kays and Crawford [4]. The insignificant difference is due to
the different turbulence models used in the analyses.

The predicted Nusselt numbers for the cases of onc wall
only heated with the other insulated, Nu;, for the range of
the relative velocity, U*, between 0.0 and 1.0 arc plotted
against the radius ratio, %, in Fig. | for Reynolds and Prandt]
numbers of 10° and 0.72, respectively. The effect of the
relative velocity is seen to decrease with a decreasing value
of « as was the case of the effect on the friction factor as seen
previously in ref. [2]. Tt was also obscrved that the cffect of
the relative velocity on heat transfer is the opposite of that
of the friction factor: i.c. the heat transfer increases with an
increasing value of the rclative velocity,
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h

k
Nu
Pr
R
Re
T
u
U
U*

heat transfer coefficient

thermal conductivity

Nusselt number

Prandt! number

radius

Reynolds number

temperature

fluid velocity in x-direction

core velocity

dimensionless relative velocity, Ufu,.

Greek symbols

o

radius ratio, Ri/R,

NOMENCLATURE

0*

influence coefficients.

Subscripts

b

i

il
.k
0
00

bulk

inner

constant heat rate at the inner wall with the
outer insulated

ioro

outer

constant heat rate at the outer wall with the
inner insulated
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FiG. 2. Influence coetlicients.

Figure I also illustrates that while the effect of the relative
velocity on Nu;; (the Nusselt number for the case of the inner
wall only heated and the outer insulated) is significant, the
effect on Nu,, (the case of the outer wall heated und the inner
insulated) 1s negligibly small. The same trend can be observed
for the effect of the radius ratio on heat transfer. The ana-
Iytical study of Kays and Crawford [4] of concentric annuli
with stationary cores (i.e. U* = 0) is compared with that of
the present analysis. Despite the different method of analysis
employed, it was seen that the agreement is very good for
the range of the parameters studied. No comparison was
made for the case of concentric annuli with moving cores
(i.e. U* > () with other works as there is none available in
the open literature.

From Table 1, it can be seen that the Nusselt numbers
increase with increasing values of Prandtl number but its
combined effect with that of the relative velocity on the
Nusselt number are similar to those observed in Fig. .

The effects of w and U* on the influence coefficients. 0* and
0¥, are shown in Fig. 2 for Reynolds and Prandtl numbers of
10° and 0.72, respectively.

4. CONCLUDING REMARKS

A complete solution for the fully developed turbulent flow
and heat transfer in concentric annuli with moving cores has
been made.

The study showed that for equal conditions, increasing
relative velocity were observed for the following changes:

{1} a decrease in friction factor; and

(11) an increase in Nusselt number.

However, the effect of the relative velocity seems to diminish

with decreasing value of the radius ratio and especially for
the case of the outer wall heated and the inner wall insulated.
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Study of heat transfer from buried nuclear waste canisters
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INTRODUCTION

IT HAS been proposed that radioactive waste from nuclear
power plants be disposed of in cylindrical containers by
burying them under the surface of the earth. To carry out
safety analysis and to gauge the impact of this proposal on
the environment it is necessary to determine flow patterns
and heat transfer rates in the vicinity of these containers, The
present work gives a summary of analytical and numerical
results for temperature distribution in and around a canister
buried in a saturated porous medium. Heating of the canister
surface takes place because of the decay of radicactive waste
contained within it. It is important to know the maximum
and minimum temperatures on the cylinder surface since
they decide the magnitude of the transport coefficients and
the extent of the thermal stresses. Heat transfer from the
cylinder to its surroundings will occur due to one of the
following mechanisms: conduction, buoyancy-driven con-
vection of the pore fluid and forced convection due to natural
ground water movement. Solutions for these problems are
available when the surface of the cylinder has a prescribed
temperature. Results have been presented here for a single
and an array of cylinders with specified heat flux on their
surface.

FORMULATION

Fluid flow in a saturated homogeneous isotropic porous
medium is taken to be governed by Darcy’s law,

u = —K(Vp+pgk)/u 4y

the incompressibility constraint V-u =0 and the energy
transport equation,

T, +u-VT =aV*T. 2

In the absence of buoyancy effects p is a constant and
V-u=V¥-KVp = 0. For flow past a single cylinder buried in
a uniform medium, K is a constant and V'p = 0. Using
as u—ifv = U. (1 —R%z%) where r = x+iy and i = /1.
For an array of canisters we solve the equation V- KVp = 0
numerically by assigning a small value for K over the cyl-
inders and unit value in the flow region. Equation (2) has
been solved here subject to the constant heat flux condition,
~ T, {r = R) = 4. The results are presented in dimensionless
form using R as the length scale, R?/u as the time scale. the
approach velocity U as the velocity scale and ¢R as the
temperature scale. In free convection problems the velocity
scale is «/R. Convection problems are assumed to have
reached steady state since they occur in boundary layers.

RESULTS

Conduction limit
In the absence of a super-imposed flow the conduction
problem follows the dimensionless equation,

T, =VT

subject to T(¢ = 0) = 0. This equation can be solved by
Fourier transforms. For an isothermal boundary condition
T(r = 1) = 1 the solution for the wall heat flux is

PAN .
—Tha = (_{J J; B—ﬁ,‘(giexp (—f*ndp

where N(B) = JI{B) + Yi(B). This integral is evaluated
numerically by Simpson’s rule. The conduction solution also
describes the local heat flux for steady forced flow parallel
to the axis of a cylinder with ¢ replaced by z/Pe. The latter
problem has been solved in [1] using boundary-layer analysis.
The two solutions are compared in Table 1.

For a heat flux boundary condition (—~T,(r = 1) = 1) we
solve for the wall temperature as,

. “RAP) 5
T(1,1) L [iN([i)[l exp (—f°0} dp
where  N(f) = Ji(f)+ Yi(B) and R(B) = Jy(B)Y ()~
JUB)YYo(B). The value of 7 attained by an isolated canister
can increase further if more canisters are present in its neigh-
bourhood. Consider a symmetric array of five canisters, four
of which are placed on a square edge o and the fifth is
placed at the centre. The temperature of the central
canister is obtained by the principle of linear superposi-
tion. Calculations show that the minimum temperature
is within 98% of the maximum temperature in Table 2.

Free convection [2)
The boundary-layer form of cquations governing buoy-
ancy-driven flow and heat transfer are given below.

Table . Comparison of heat flux values
on an isothermal cylinder

t, z{ Pe Present 1
0.5 2.081 2.06

1 1.649 1.597

5 1.071 1.107




